New effects of type III effectors.

نویسنده

  • Roger Innes
چکیده

The enzymatic activities and/or targets of four type III effector proteins from plant pathogens have been reported in a flurry of new papers. In this issue, XopD is shown to remove SUMO groups from host cell proteins, while in previous issues of Molecular Microbiology, HopPtoD2 was shown to function as a tyrosine phosphatase and AvrRpt2 as probably a cysteine protease that targets the host RIN4 protein. Finally, AvrPphB is revealed in a recent Science paper to function as a cysteine protease that targets the host PBS1 kinase. This work is providing some of the first insights into how plant pathogens subvert host cell signalling machinery to cause disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diverse evolutionary mechanisms shape the type III effector virulence factor repertoire in the plant pathogen Pseudomonas syringae.

Many gram-negative pathogenic bacteria directly translocate effector proteins into eukaryotic host cells via type III delivery systems. Type III effector proteins are determinants of virulence on susceptible plant hosts; they are also the proteins that trigger specific disease resistance in resistant plant hosts. Evolution of type III effectors is dominated by competing forces: the likely requi...

متن کامل

Identification of growth inhibition phenotypes induced by expression of bacterial type III effectors in yeast.

Many Gram-negative pathogenic bacteria use a type III secretion system to translocate a suite of effector proteins into the cytosol of host cells. Within the cell, type III effectors subvert host cellular processes to suppress immune responses and promote pathogen growth. Numerous type III effectors of plant and animal bacterial pathogens have been identified to date, yet only a few of them are...

متن کامل

Identification of new bacterial type III secreted effectors with a recursive Hidden Markov Model profile-alignment strategy

To identify new bacterial type III secreted effectors is computationally a big challenge. At least a dozen machine learning algorithms have been developed, but so far have only achieved limited success. Sequence similarity appears important for biologists but is frequently neglected by algorithm developers for effector prediction, although large success was achieved in the field with this strat...

متن کامل

Identification of Novel Type III Effectors Using Latent Dirichlet Allocation

Among the six secretion systems identified in Gram-negative bacteria, the type III secretion system (T3SS) plays important roles in the disease development of pathogens. T3SS has attracted a great deal of research interests. However, the secretion mechanism has not been fully understood yet. Especially, the identification of effectors (secreted proteins) is an important and challenging task. Th...

متن کامل

Accurate Prediction of Secreted Substrates and Identification of a Conserved Putative Secretion Signal for Type III Secretion Systems

The type III secretion system is an essential component for virulence in many Gram-negative bacteria. Though components of the secretion system apparatus are conserved, its substrates--effector proteins--are not. We have used a novel computational approach to confidently identify new secreted effectors by integrating protein sequence-based features, including evolutionary measures such as the p...

متن کامل

Bacterial Control of Pores Induced by the Type III Secretion System: Mind the Gap

Type III secretion systems (T3SSs) are specialized secretion apparatus involved in the virulence of many Gram-negative pathogens, enabling the injection of bacterial type III effectors into host cells. The T3SS-dependent injection of effectors requires the insertion into host cell membranes of a pore-forming "translocon," whose effects on cell responses remain ill-defined. As opposed to pore-fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular microbiology

دوره 50 2  شماره 

صفحات  -

تاریخ انتشار 2003